Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,755)

Search Parameters:
Keywords = virtual reality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 32356 KiB  
Article
Enriching User-Visitor Experiences in Digital Museology: Combining Social and Virtual Interaction within a Metaverse Environment
by Alba Alabau, Lidia Fabra, Ana Martí-Testón, Adolfo Muñoz, J. Ernesto Solanes and Luis Gracia
Appl. Sci. 2024, 14(9), 3769; https://doi.org/10.3390/app14093769 (registering DOI) - 28 Apr 2024
Viewed by 127
Abstract
This study investigates the potential of integrating multilayer animations and sophisticated shader technologies to enhance visitor social interactions within metaverse exhibition spaces. It is part of a broader initiative aimed at developing innovative digital museology strategies that foster social engagement through virtual reality [...] Read more.
This study investigates the potential of integrating multilayer animations and sophisticated shader technologies to enhance visitor social interactions within metaverse exhibition spaces. It is part of a broader initiative aimed at developing innovative digital museology strategies that foster social engagement through virtual reality (VR) experiences. The methodology adopted seeks to provide a more immersive and human-centric exploration of 3D digital environments by blending elements of physical spaces with the interactive dynamics common in video games. A virtual exhibition space themed around Mars was created as a testbed to facilitate social interactions among users, who navigate the environment via avatars. This digital space was developed using a specialized Unity template designed by the metaverse platform Spatial.io. Overcoming the programming constraints imposed by Spatial.io, which limits the use of external scripts for security and stability, posed a significant challenge. Nonetheless, by leveraging the ability to modify shader codes used for material creation and employing advanced animation techniques with layered effects, the authors of this work achieved dynamic material responses to lighting changes and initiated complex asset interactions beyond simple linear animations. Full article
Show Figures

Figure 1

20 pages, 4771 KiB  
Article
Advancing the Decarbonization of the Construction Sector: Lifecycle Quality and Performance Assurance of Nearly Zero-Energy Buildings
by Emanuele Piaia, Beatrice Turillazzi, Roberto Di Giulio and Rizal Sebastian
Sustainability 2024, 16(9), 3687; https://doi.org/10.3390/su16093687 (registering DOI) - 28 Apr 2024
Viewed by 147
Abstract
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for [...] Read more.
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry. Full article
14 pages, 5855 KiB  
Article
Rock Slope Stability Analysis Using Terrestrial Photogrammetry and Virtual Reality on Ignimbritic Deposits
by Tania Peralta, Melanie Menoscal, Gianella Bravo, Victoria Rosado, Valeria Vaca, Diego Capa, Maurizio Mulas and Luis Jordá-Bordehore
J. Imaging 2024, 10(5), 106; https://doi.org/10.3390/jimaging10050106 (registering DOI) - 28 Apr 2024
Viewed by 104
Abstract
Puerto de Cajas serves as a vital high-altitude passage in Ecuador, connecting the coastal region to the city of Cuenca. The stability of this rocky massif is carefully managed through the assessment of blocks and discontinuities, ensuring safe travel. This study presents a [...] Read more.
Puerto de Cajas serves as a vital high-altitude passage in Ecuador, connecting the coastal region to the city of Cuenca. The stability of this rocky massif is carefully managed through the assessment of blocks and discontinuities, ensuring safe travel. This study presents a novel approach, employing rapid and cost-effective methods to evaluate an unexplored area within the protected expanse of Cajas. Using terrestrial photogrammetry and strategically positioned geomechanical stations along the slopes, we generated a detailed point cloud capturing elusive terrain features. We have used terrestrial photogrammetry for digitalization of the slope. Validation of the collected data was achieved by comparing directional data from Cloud Compare software with manual readings using a digital compass integrated in a phone at control points. The analysis encompasses three slopes, employing the SMR, Q-slope, and kinematic methodologies. Results from the SMR system closely align with kinematic analysis, indicating satisfactory slope quality. Nonetheless, continued vigilance in stability control remains imperative for ensuring road safety and preserving the site’s integrity. Moreover, this research lays the groundwork for the creation of a publicly accessible 3D repository, enhancing visualization capabilities through Google Virtual Reality. This initiative not only aids in replicating the findings but also facilitates access to an augmented reality environment, thereby fostering collaborative research endeavors. Full article
(This article belongs to the Special Issue Exploring Challenges and Innovations in 3D Point Cloud Processing)
Show Figures

Figure 1

36 pages, 7366 KiB  
Article
An Audio-Based SLAM for Indoor Environments: A Robotic Mixed Reality Presentation
by Elfituri S. F. Lahemer and Ahmad Rad
Sensors 2024, 24(9), 2796; https://doi.org/10.3390/s24092796 (registering DOI) - 27 Apr 2024
Viewed by 266
Abstract
In this paper, we present a novel approach referred to as the audio-based virtual landmark-based HoloSLAM. This innovative method leverages a single sound source and microphone arrays to estimate the voice-printed speaker’s direction. The system allows an autonomous robot equipped with a single [...] Read more.
In this paper, we present a novel approach referred to as the audio-based virtual landmark-based HoloSLAM. This innovative method leverages a single sound source and microphone arrays to estimate the voice-printed speaker’s direction. The system allows an autonomous robot equipped with a single microphone array to navigate within indoor environments, interact with specific sound sources, and simultaneously determine its own location while mapping the environment. The proposed method does not require multiple audio sources in the environment nor sensor fusion to extract pertinent information and make accurate sound source estimations. Furthermore, the approach incorporates Robotic Mixed Reality using Microsoft HoloLens to superimpose landmarks, effectively mitigating the audio landmark-related issues of conventional audio-based landmark SLAM, particularly in situations where audio landmarks cannot be discerned, are limited in number, or are completely missing. The paper also evaluates an active speaker detection method, demonstrating its ability to achieve high accuracy in scenarios where audio data are the sole input. Real-time experiments validate the effectiveness of this method, emphasizing its precision and comprehensive mapping capabilities. The results of these experiments showcase the accuracy and efficiency of the proposed system, surpassing the constraints associated with traditional audio-based SLAM techniques, ultimately leading to a more detailed and precise mapping of the robot’s surroundings. Full article
(This article belongs to the Section Navigation and Positioning)
18 pages, 2117 KiB  
Article
A Comparison of the Immediate Effects of Verbal and Virtual Reality Feedback on Gait in Children with Cerebral Palsy
by Tine De Mulder, Heleen Adams, Tijl Dewit, Guy Molenaers, Anja Van Campenhout and Kaat Desloovere
Children 2024, 11(5), 524; https://doi.org/10.3390/children11050524 (registering DOI) - 27 Apr 2024
Viewed by 135
Abstract
Different types of feedback are used during gait training in children with cerebral palsy (CP), including verbal (VB) and virtual reality (VR) feedback. Previous studies on VR feedback showed positive effects on the targeted gait parameter. However, both positive and negative side effects [...] Read more.
Different types of feedback are used during gait training in children with cerebral palsy (CP), including verbal (VB) and virtual reality (VR) feedback. Previous studies on VR feedback showed positive effects on the targeted gait parameter. However, both positive and negative side effects on other parameters were seen as well. The literature on the effect of VB feedback is lacking and, to our knowledge, both feedback methods have not yet been compared. In this monocentric study with a single-session intervention protocol, children with CP completed a training session on the Gait Real-Time Analysis Interactive Lab (GRAIL) and received both VB and VR feedback on hip extension, in randomized order. Outcome parameters were continuous gait curves of sagittal kinematics and hip kinetics, specific features of hip angle and moment, sagittal gait variable scores and gait profile scores. Improvement of the targeted gait parameter was seen both after VB and VR feedback, with a small advantage for VR over VB feedback. Furthermore, positive side effects on knee and ankle sagittal kinematics were seen. However, the overall gait profile score did not improve, most likely due to negative compensatory strategies. In conclusion, children with CP can adapt gait in response to both VB and VR feedback, with VR feedback producing a slightly better effect. Due to secondary effects on parameters other than the targeted parameter, the overall gait did not improve. Full article
(This article belongs to the Special Issue Clinical Gait Analysis in Children: Progress and Relevance)
38 pages, 1778 KiB  
Review
Neurogaming in Virtual Reality: A Review of Video Game Genres and Cognitive Impact
by Jesus GomezRomero-Borquez, Carolina Del-Valle-Soto, J. Alberto Del-Puerto-Flores, Ramon A. Briseño and José Varela-Aldás
Electronics 2024, 13(9), 1683; https://doi.org/10.3390/electronics13091683 - 26 Apr 2024
Viewed by 263
Abstract
This work marks a significant advancement in the field of cognitive science and gaming technology. It offers an in-depth analysis of the effects of various video game genres on brainwave patterns and concentration levels in virtual reality (VR) settings. The study is groundbreaking [...] Read more.
This work marks a significant advancement in the field of cognitive science and gaming technology. It offers an in-depth analysis of the effects of various video game genres on brainwave patterns and concentration levels in virtual reality (VR) settings. The study is groundbreaking in its approach, employing electroencephalograms (EEGs) to explore the neural correlates of gaming, thus bridging the gap between technology, psychology, and neuroscience. This review enriches the dialogue on the potential of video games as a therapeutic tool in mental health. The study’s findings illuminate the capacity of different game genres to elicit varied brainwave responses, paving the way for tailored video game therapies. This review contributes meaningfully to the state of the art by offering empirical insights into the interaction between gaming environments and brain activity, highlighting the potential applications in therapeutic settings, cognitive training, and educational tools. The findings are especially relevant for developing VR gaming content and therapeutic games, enhancing the understanding of cognitive processes, and aiding in mental healthcare strategies. Full article
(This article belongs to the Special Issue Serious Games and Extended Reality (XR))
19 pages, 588 KiB  
Review
Virtual Reality-Based Interventions to Improve Balance in Patients with Traumatic Brain Injury: A Scoping Review
by Gabriel Hernan, Neha Ingale, Sujith Somayaji and Akhila Veerubhotla
Brain Sci. 2024, 14(5), 429; https://doi.org/10.3390/brainsci14050429 - 26 Apr 2024
Viewed by 233
Abstract
Introduction: Virtual reality (VR)-based interventions to improve balance and mobility are gaining increasing traction across patient populations. VR-based interventions are believed to be more enjoyable and engaging for patients with traumatic brain injury. This scoping review aims to summarize existing studies from the [...] Read more.
Introduction: Virtual reality (VR)-based interventions to improve balance and mobility are gaining increasing traction across patient populations. VR-based interventions are believed to be more enjoyable and engaging for patients with traumatic brain injury. This scoping review aims to summarize existing studies from the literature that used VR to improve balance and mobility and determine the gap in VR-based balance literature specific to individuals with traumatic brain injury. Methods: Two authors independently searched the literature using the search terms “Virtual Reality Traumatic Brain Injury Lower Limb”, “Virtual Reality Traumatic Brain Injury Balance”, and “Virtual Reality Traumatic Brain Injury Gait”. Results: A total of seventeen studies, specifically, three randomized controlled trials, one one-arm experimental study, two retrospective studies, two case studies, one feasibility/usability study, one cohort study, and seven diagnostic (validation) studies, met the inclusion criteria for this review. The methodological quality of the studies evaluated using the PEDro scale was fair. Discussion: Future studies should focus on large-scale clinical trials using validated technology to determine its effectiveness and dose–response characteristics. Additionally, standard assessment tools need to be selected and utilized across interventional studies aimed at improving balance and mobility to help compare results between studies. Full article
Show Figures

Figure 1

20 pages, 679 KiB  
Article
Pedagogical Competence Analysis Based on the TPACK Model: Focus on VR-Based Survival Swimming Instructors
by Yoo Churl Shin and Chulwoo Kim
Educ. Sci. 2024, 14(5), 460; https://doi.org/10.3390/educsci14050460 - 25 Apr 2024
Viewed by 288
Abstract
This study explores the pedagogical competence of VR-based survival swimming instructors in South Korea, focusing on their application of Technological Pedagogical Content Knowledge (TPACK). Employing qualitative methodology, we conducted in-depth interviews with 11 instructors to understand their instructional strategies within a VR context. [...] Read more.
This study explores the pedagogical competence of VR-based survival swimming instructors in South Korea, focusing on their application of Technological Pedagogical Content Knowledge (TPACK). Employing qualitative methodology, we conducted in-depth interviews with 11 instructors to understand their instructional strategies within a VR context. The study aimed to identify how instructors integrate TPACK components into their teaching, specifically exploring technological content knowledge (content utilization, equipment preparation, addressing dizziness), pedagogical content knowledge (creating a conducive learning environment, enhancing student engagement), and technological pedagogical knowledge (setting appropriate learning objectives and guidelines, educational assessment), understanding learners, and pedagogical beliefs and philosophy. Our findings reveal that VR-based instructors proficiently blend these knowledge domains to enhance the effectiveness of survival swimming education. The results demonstrate that strategic pedagogical approaches are crucial in leveraging VR technology for educational outcomes, highlighting the importance of instructor competence in successfully implementing VR in teaching. This research contributes to the literature by detailing specific competencies critical for VR-based education and suggesting that a thorough understanding and application of the TPACK framework are essential for optimizing VR’s educational potential. Full article
(This article belongs to the Special Issue Teaching and Learning with Virtual/Augmented Reality)
14 pages, 8017 KiB  
Article
Study of the Possibility of Using Virtual Reality Application in Rehabilitation Among Elderly Post-Stroke Patients
by Katarzyna Matys-Popielska, Krzysztof Popielski and Anna Sibilska-Mroziewicz
Sensors 2024, 24(9), 2745; https://doi.org/10.3390/s24092745 - 25 Apr 2024
Viewed by 194
Abstract
Thanks to medical advances, life expectancy is increasing. With it comes an increased incidence of diseases, of which age is a risk factor. Stroke is among these diseases, and is one of the causes of long-term disability. The opportunity to treat these patients [...] Read more.
Thanks to medical advances, life expectancy is increasing. With it comes an increased incidence of diseases, of which age is a risk factor. Stroke is among these diseases, and is one of the causes of long-term disability. The opportunity to treat these patients is via rehabilitation. A promising new technology that can enhance rehabilitation is virtual reality (VR). However, this technology is not widely used by elderly patients, and, moreover, the elderly often do not use modern technology at all. It therefore becomes a legitimate question whether elderly people will be able to use virtual reality in rehabilitation. This article presents a rehabilitation application dedicated to patients with upper limb paresis and unilateral spatial neglect (USN). The application was tested on a group of 60 individuals including 30 post-stroke patients with an average age of 72.83 years. The results of the conducted study include a self-assessment by the patients, the physiotherapist’s evaluation, as well as the patients’ performance of the exercise in VR. The study showed that elderly post-stroke patients are able to use virtual reality applications, but the ability to correctly and fully perform an exercise in VR depends on several factors. One of them is the ability to make logical contact (p = 0.0001 < 0.05). However, the study presented here shows that the ability to use VR applications does not depend on age but on mental and physical condition, which gives hope that virtual reality applications can be used in post-stroke rehabilitation among patients of all ages. Full article
10 pages, 599 KiB  
Article
Adaptation of Postural Sway in a Standing Position during Tilted Video Viewing Using Virtual Reality: A Comparison between Younger and Older Adults
by Tsubasa Tashiro, Noriaki Maeda, Takeru Abekura, Rami Mizuta, Yui Terao, Satoshi Arima, Satoshi Onoue and Yukio Urabe
Sensors 2024, 24(9), 2718; https://doi.org/10.3390/s24092718 - 24 Apr 2024
Viewed by 167
Abstract
This study aimed to investigate the effects of wearing virtual reality (VR) with a head-mounted display (HMD) on body sway in younger and older adults. A standing posture with eyes open without an HMD constituted the control condition. Wearing an HMD and viewing [...] Read more.
This study aimed to investigate the effects of wearing virtual reality (VR) with a head-mounted display (HMD) on body sway in younger and older adults. A standing posture with eyes open without an HMD constituted the control condition. Wearing an HMD and viewing a 30°-tilt image and a 60°-tilt image in a resting standing position were the experimental conditions. Measurements were made using a force plate. All conditions were performed three times each and included the X-axis trajectory length (mm), Y-axis trajectory length (mm), total trajectory length (mm), trajectory length per unit time (mm/s), outer peripheral area (mm2), and rectangular area (mm2). The results showed a significant interaction between generation and condition in Y-axis trajectory length (mm) and total trajectory length (mm), with an increased body center-of-gravity sway during the viewing of tilted VR images in older adults than in younger adults in both sexes. The results of this study show that body sway can be induced by visual stimulation alone with VR without movement, suggesting the possibility of providing safe and simple balance training to older adults. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 1035 KiB  
Review
Virtual Reality for Spatial Planning and Emergency Situations: Challenges and Solution Directions
by Reinout Wiltenburg, Frida Ruiz Mendoza, William Hurst and Bedir Tekinerdogan
Appl. Sci. 2024, 14(9), 3595; https://doi.org/10.3390/app14093595 - 24 Apr 2024
Viewed by 190
Abstract
The notion of the smart city involves embedding Industry 4.0 technologies to improve the lives of inhabitants in urban environments. Within this context, smart city data layers (SCDLs) concern the integration of extra tiers of information for the purposes of improving communication potential. [...] Read more.
The notion of the smart city involves embedding Industry 4.0 technologies to improve the lives of inhabitants in urban environments. Within this context, smart city data layers (SCDLs) concern the integration of extra tiers of information for the purposes of improving communication potential. Under the Industry 4.0 technology grouping, advanced communication technologies, such as virtual reality (VR), further the opportunities to model, recreate, evaluate and communicate scenarios that potentially improve citizens lives at multiple SCDL scales in a smart cities context. The use of added contextual information in SCDLs is of special interest for emergency planning situations at the building scale. In this research, a literature review to understand the current approaches for the use, development and evaluation of VR applications in the context of emergency planning was conducted. The results indicated four main categories of relevant challenges for these types of applications, for which recommendations and a roadmap for VR development are presented. In total, the study identified 10 commonly occurring challenges (e.g., optimization and discomfort) and 19 solution directions (e.g., model construction and spatial directions) in related articles when considering the development of VR for spatial planning and emergency situations. Full article
(This article belongs to the Special Issue Recent Research on Digital Reality)
14 pages, 3573 KiB  
Article
Participatory Exhibition-Viewing Using Augmented Reality and Analysis of Visitor Behavior
by Chun-I Lee, Yen-Hsi Pan and Brian Chen
Appl. Sci. 2024, 14(9), 3579; https://doi.org/10.3390/app14093579 - 24 Apr 2024
Viewed by 242
Abstract
Augmented reality (AR) is rapidly becoming a popular technology for exhibitions. The extended content provided through virtual elements offers a higher level of interactivity and can increase the appeal of the exhibition for younger viewers, in particular. However, AR technology in exhibition settings [...] Read more.
Augmented reality (AR) is rapidly becoming a popular technology for exhibitions. The extended content provided through virtual elements offers a higher level of interactivity and can increase the appeal of the exhibition for younger viewers, in particular. However, AR technology in exhibition settings is typically utilized to extend the effects of exhibits, focusing solely on individual experiences and lacking in shared social interactions. In order to address this limitation, in this study, we used AR technology to construct a participatory exhibition-viewing system in the form of an AR mobile application (app), “Wander Into Our Sea”. This system was developed as a component of the 2022 Greater Taipei Biennial of Contemporary Art exhibition titled “Log Into Our Sea”. The app features two modes: exhibition-viewing mode and message mode. The first embodies passive exhibition-viewing while the second offers channels for active participation. The app has three functions: (1) in exhibition mode, visitors passively view the exhibition content through the AR lens, (2) in message mode, visitors can use the AR lens to leave messages in the 3D space of the exhibition to become part of the exhibit, and (3) during the use of either mode, the app collects data on visitor behavior and uploads it to a cloud to create a research database. The third function allowed us to compare the behaviors of exhibition visitors while they used the two modes. Results revealed that without restricting the ways and sequences in which AR content was viewed, there were no significant differences in the duration of viewing, or the distance covered by visitors between the two modes. However, the paths they took were more concentrated in the exhibition-viewing mode, which indicates that this mode encouraged visitors to view the exhibit in accordance with the AR content. In contrast, in message mode, visitors were encouraged to leave text messages and read those left by others, which created disorganized unpredictable paths. Our study demonstrates an innovative application of AR positioning within an interactive exhibition-viewing system, showcasing a novel way to engage visitors and enrich their experience. Full article
Show Figures

Figure 1

24 pages, 9930 KiB  
Article
Vehicle-to-Cyclist Collision Prediction Models by Applying Machine Learning Techniques to Virtual Reality Bicycle Simulator Data
by Ángel Losada, Francisco Javier Páez, Francisco Luque, Luca Piovano, Nuria Sánchez and Miguel Hidalgo
Appl. Sci. 2024, 14(9), 3570; https://doi.org/10.3390/app14093570 - 24 Apr 2024
Viewed by 232
Abstract
The study of vulnerable road users (VRUs) behavior is key to designing and optimizing driving assistance systems, such as the autonomous emergency braking (AEB) system. These kinds of devices could help lower the VRU accident rate, which is of particular interest to cyclists, [...] Read more.
The study of vulnerable road users (VRUs) behavior is key to designing and optimizing driving assistance systems, such as the autonomous emergency braking (AEB) system. These kinds of devices could help lower the VRU accident rate, which is of particular interest to cyclists, who are the subject of this research. To better understand cyclists’ reaction patterns in frequently occurring collision scenarios in urban environments, this paper focuses on developing a virtual reality (VR) simulator for cyclists (VRBikeSim) that incorporates eye-tracking functionality. The braking and steering systems were calibrated by means of on-track tests with a sensorized bicycle in order to improve the accuracy of the bicycle virtual model. From the data obtained in the virtual tests, a battery of predictive models was built using supervised machine learning classifiers. All of them exhibited an accuracy higher than 85%, especially the K-Nearest Neighbors model. This model allowed us to obtain the best balance between the prediction of avoidance and collision cases, as well as enabling computationally lower times to be incorporated into the decision-making algorithm of an AEB system. Full article
Show Figures

Figure 1

16 pages, 14619 KiB  
Article
Virtual Reality in Cultural Heritage: A Setup for Balzi Rossi Museum
by Saverio Iacono, Matteo Scaramuzzino, Luca Martini, Chiara Panelli, Daniele Zolezzi, Massimo Perotti, Antonella Traverso and Gianni Viardo Vercelli
Appl. Sci. 2024, 14(9), 3562; https://doi.org/10.3390/app14093562 - 23 Apr 2024
Viewed by 295
Abstract
This study presents the creation of a virtual reality experience for the Museo Preistorico dei Balzi Rossi e Zona Archeologica (hence Balzi Rossi Museum) commemorating the centenary of Prince Albert I Grimaldi’s archaeological work at the site. The project aims to preserve and [...] Read more.
This study presents the creation of a virtual reality experience for the Museo Preistorico dei Balzi Rossi e Zona Archeologica (hence Balzi Rossi Museum) commemorating the centenary of Prince Albert I Grimaldi’s archaeological work at the site. The project aims to preserve and convey the site’s heritage through advanced VR technology. Photogrammetry was used for 3D reconstruction of the entire Balzi Rossi coastal cliffs, including the notable “Caviglione” and “Florestano” caves, known for their upper Paleolithic rock engravings. Two subsequent development phases produced the final public VR experience, incorporating Nanite technology for enhanced visual fidelity. This advancement resulted in a more detailed and immersive VR experience, presenting the Balzi Rossi cliffs across different historical periods, including the Würm glaciation. Key to this phase was optimizing the VR experience for performance, focusing on stable frame rates and minimizing motion sickness, and integrating a multi-lingual interface for broader accessibility. Since November 2023, the VR setup at Balzi Rossi Museum has been an educational and interactive feature enabling visitors to virtually explore the site’s history. This study aims to describe a process for optimizing and enabling the creation of VR experiences while maintaining a high polygon count within the context of small teams. Full article
(This article belongs to the Special Issue Recent Advances in 3D Reconstruction, 3D Imaging and Virtual Reality)
Show Figures

Figure 1

21 pages, 4649 KiB  
Article
Immersive Storytelling in Social Virtual Reality for Human-Centered Learning about Sensitive Historical Events
by Athina Papadopoulou, Stylianos Mystakidis and Avgoustos Tsinakos
Information 2024, 15(5), 244; https://doi.org/10.3390/info15050244 - 23 Apr 2024
Viewed by 621
Abstract
History is a subject that students often find uninspiring in school education. This paper explores the application of social VR metaverse platforms in combination with interactive, nonlinear web platforms designed for immersive storytelling to support learning about a sensitive historical event, namely the [...] Read more.
History is a subject that students often find uninspiring in school education. This paper explores the application of social VR metaverse platforms in combination with interactive, nonlinear web platforms designed for immersive storytelling to support learning about a sensitive historical event, namely the Asia Minor Catastrophe. The goal was to design an alternative method of learning history and investigate if it would engage students and foster their independence. A mixed-methods research design was applied. Thirty-four (n = 34) adult participants engaged in the interactive book and VR space over the course of three weeks. After an online workshop, feedback was collected from participants through a custom questionnaire. The quantitative data from the questionnaire were analyzed statistically utilizing IBM SPSS, while the qualitative responses were coded thematically. This study reveals that these two tools can enhance historical education by increasing student engagement, interaction, and understanding. Participants appreciated the immersive and participatory nature of the material. This study concludes that these technologies have the potential to enhance history education by promoting active participation and engagement. Full article
Show Figures

Figure 1

Back to TopTop